487 research outputs found

    Periodic review base-stock replenishment policy with endogenous lead times.

    Get PDF
    In this paper, we consider a two stage supply chain where the retailer's inventory is controlled by the periodic review, base-stock level (R,S) replenishment policy and the replenishment lead times are endogenously generated by the manufacturer's production system with finite capacity. We extend the work of Benjaafar and Kim (2004) who study the effect of demand variability in a continuously reviewed base-stock policy with single unit demands. In our analysis, we allow for demand in batches of variable size, which is a common setting in supply chains. A procedure is developed using matrix analytic methods to provide an exact calculation of the lead time distribution, which enables the computation of the distribution of lead time demand and consequently the safety stock in an exact way instead of using approximations. Treating the lead time as an endogenous stochastic variable has a substantial impact on safety stock. We numerically show that the exogenous lead time assumption may dramatically degrade customer service.Production/inventory systems; Base-stock replenishment policy; endogenous lead times; Safety stock; Phase-type distribution; Matrix-analytical methods;

    Triangular M/G/1-type and tree-like QBD Markov chains

    Get PDF
    In applying matrix-analytic methods to M/G/1-type and tree-like QBD Markov chains, it is crucial to determine the solution to a (set of) nonlinear matrix equation(s). This is usually done via iterative methods. We consider the highly structured subclass of triangular M/G/1-type and tree-like QBD Markov chains that allows for an efficient direct solution of the matrix equation

    A smoothing replenishment policy with endogenous lead times.

    Get PDF
    We consider a two echelon supply chain consisting of a single retailer and a single manufacturer. Inventory control policies at the retailer level often transmit customer demand variability to the manufacturer, sometimes even in an amplified form (known as the bullwhip effect). When the manufacturer produces in a make-to-order fashion though, he prefers a smooth order pattern. But dampening the variability in orders inflates the retailer's safety stock due to the increased variance of the retailers inventory levels. We can turn this issue of conflicting objectives into a win-win situation for both supply chain echelons when we treat the lead time as an endogenous variable. A less variable order pattern generates shorter and less variable (production/replenishment) lead times, introducing a compensating effect on the retailer's safety stock. We show that by including endogenous lead times, the order pattern can be smoothed to a considerable extent without increasing stock levels.Bullwhip effect; Demand; endogenous lead times; Fashion; Inventory; Inventory control; Markov processes; Order; Policy; Queueing; Research; Safety stock; Smoothing; Supply chain; Supply chain management; Time; Variability; Variance;

    Deep genetic divergence and recent radiations in sand goby <i>Pomatoschistus minutus</i> along European coasts

    Get PDF
    Understanding evolutionary patterns is more complex in marine compared to continental species because marine species have high effective population sizes and high levels of dispersal due to an apparent lack of barriers. Moreover, phylogeographical breaks in the marine realm such as the Atlantic-Mediterranean transition remain controversial. Therefore a new high-quality phylogeographic analysis was realized for a marine demersal fish, the sand goby Pomatoschistus minutus (Gobiidae, Teleostei). Sand gobies of 12 locations along the full European distribution range were analyzed by sequencing a large fragment of the mitochondrial cytochrome b gene.The phylogenetic results show that P. minutus comprises two deep genealogical lineages, the Mediterranean Sea Clade (MS-Clade) and the Atlantic Ocean Clade (AOClade), that date back to the Early Pleistocene (1.6-0.8 MYA). Even though the sand goby occurs only in a few northern locations in the Mediterranean, the MS-Clade contains the Significant Units (ESU), one off the Western Iberian Peninsula and the other in the marine systems of the North Atlantic (Bay of Biscay, North Sea, Irish Sea and Baltic Sea). This is consistent with two separate palaeorefugia during the Pleistocene glaciations: the Iberian Peninsula and the Bay of Biscay. Less haplotypes were shared among the marine systems of the North Atlantic, indicating a low present-day gene flow. The network analysis showed a recent radiation in each marine system, even in the northern Baltic Sea where the recolonization of P. minutus occurred only 8000 years ago. This phylogeographic pattern will be compared with putatively adaptive loci in order to study the characteristics of local adaptation in the marine environment

    Exploring glacial and present evolutionary patterns of a marine goby, <i>Pomatoschistus minutus</i>

    Get PDF
    A classical understanding of marine fishes is that they have high effective population sizes and high levels of dispersal due to an apparent lack of barriers in the marine environment. The realization of a genetic population structure is therefore thought to be a slow process. To gain insights in this process, it is a challenge to disentangle the interaction between selection, gene flow, population history and genetic drift. The sand goby (Pomatoschistus minutus), which is an important ecological but noncommercial species, was chosen to distinguish between natural and anthropologically induced processes. A spatio-temporal analysis with samples from different localities throughout the species distribution and with two types of genetic markers was performed to assess the neutral genetic population structure. Phylogeographical patterns were studied by sequence cytochrome b (mtDNA). Nine new nuclear microsatellites were developed and used to describe the current genetic diversity and population structure. The genetic structure of the sand goby is best explained by a combination of present and historic factors. Due to its high potential for dispersion and high effective population size, it shows the typical features of a marine fish with a high level of diversity and a limited degree of genetic differentiation. The large genetic distance between the Venetian and all other samples shows that the sand gobies from the Adriatic Sea should be considered as a distinct cryptic species of the genus Pomatoschistus. Low but significant differentiation is observed between Atlantic and western Mediterranean P. minutus. In the Atlantic and Baltic basins, there is evidence for a postglacial range expansion and a weak pattern of isolation-by-distance. Furthermore the results support the hypothesis of a glacial refugium and a fine-scale genetic structure in the southern North Sea. The neutral genetic pattern will be compared with putatively adaptive loci in order to study the genomic characteristics of local adaptation in the marine environment. This should provide a better understanding of how fish respond to changes in the environment
    corecore